skip to main content


Search for: All records

Creators/Authors contains: "Panorkou, Nicole"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Instructional designs that include two or more artifacts (digital manipulatives, tables, graphs) have shown to support students’ development of reasoning about covarying quantities. However, research often neglects how this development occurs from the student point of view during the interactions with these artifacts. An analysis from this lens could significantly justify claims about what designs really support students’ covariational reasoning. Our study makes this contribution by examining the “messiness” of students’ transitions as they interact with various artifacts that represent the same covariational situation. We present data from a design experiment with a pair of sixth-grade students who engaged with the set of artifacts we designed (simulation, table, and graph) to explore quantities that covary. An instrumental genesis perspective is followed to analyze students’ transitions from one artifact to the next. We utilize the distinction between static and emergent shape thinking to make inferences about their reorganizations of reasoning as they (re-)form a system of instruments that integrates previously developed instruments. Our findings provide an insight into the nature of the synergy of artifacts that offers a constructive space for students to shape and reorganize their meanings about covarying quantities. Specifically, we propose different subcategories of complementarities and antagonisms between artifacts that have the potential to make this synergy productive. 
    more » « less
  2. We present a Scratch task we designed and implemented for teaching and learning coordinates in a dynamic and engaging way. We use the 5Es framework to describe the students' interactions with the task and offer suggestions of how other teachers may adopt it to successfully implement Scratch tasks. 
    more » « less
  3. null (Ed.)
    Integrating mathematics content into science usually plays a supporting role, where students use their existing mathematical knowledge for solving science tasks without exhibiting any new mathematical meanings during the process. To help students explore the reciprocal relationship between math and science, we designed an instructional module that prompted them to reason covariationally about the quantities involved in the phenomenon of the gravitational force. The results of a whole-class design experiment with sixth-grade students showed that covariational reasoning supported students’ understanding of the phenomenon of gravity. Also, the examination of the phenomenon of gravity provided a constructive space for students to construct meanings about co-varying quantities. Specifically, students reasoned about the change in the magnitudes and values of mass, distance, and gravity as those changed simultaneously as well as the multiplicative change of these quantities as they changed in relation to each other. They also reasoned multivariationally illustrating that they coordinated mass and distance working together to define the gravitational force. Their interactions with the design, which included the tool, tasks, representations, and questioning, showed to be a structuring factor in the formation and reorganization of meanings that students exhibited. Thus, this study illustrates the type of design activity that provided a constructive space for students’ forms of covariational reasoning in the context of gravity. This design can be used to develop other STEM modules that integrate scientific phenomena with covariational reasoning through technology. 
    more » « less
  4. We provide an example from our integrated math and science curriculum where students explore the mathematical relationships underlying various science phenomena. We present the tasks we designed for exploring the covariation relationships that underlie the concept of gravity and discuss the generalizations students made as they interacted with those tasks. 
    more » « less
  5. We designed an instructional module that seamlessly integrates mathematics, environmental science, and technology to help students think critically about climate change. The results from a design experiment in a sixth-grade classroom show that our tasks not only enhanced students' covariational reasoning in mathematics but also helped students identify the different traits of climate change they encounter every day in the news media. 
    more » « less
  6. This paper discusses our work in progress aiming to explore how computer simulations can be integrated into the K-12 curriculum of Earth and Environmental science. Several interactive simulations using Netlogo, a multi-agent modeling environment, and Scratch, a visual programming software are being developed with steerable parameters and the corresponding output plots for students to manipulate and interpret the results, respectively. Here, we present two simulations we designed on water cycle and discuss how these may help students learn about the distribution of water and its continuous move in the ecosystem. 
    more » « less